
EOL-less Quintus
First steps towards bringing mainline Linux to the Volla Phone
Quintus

Ivaylo Ivanov, Muhammad Asif

1

Table of contents
Introduction to the problem with mass-
production android phones

1.
What can we do about it?2.
First steps towards becoming EOL-
less3.
What works and what needs to be
done

4.
ROADMAP5.

2

Introduction to the problem
with mass-production
phones

1.

3

The problem

Most phones nowadays ship with either iOS
or Android
The ones that ship with Android make use
of the Linux kernel, unlike iOS phones
Due to the nature of Android, it requires
extensive patches to the Linux kernel, which
are organized by Google

4

The problem

Phone OEMs use BSPs provided by the SoC
vendor, which include stuff like late-stages
of bootloader, kernel, TZ, userspace trees,
etc
SoC vendors fork the linux kernel with
android patches from Google (officially
called ACK), which is forked from
torvalds/linux

5

Lifetime of Android kernels

The problem

SoC manufacturers have to go through an extensive amount of
development stages, which may take multiple years and then hand-off
the already-old codebase to OEMs
Due to Google's relaxed requirements for kernel versions in the past,
SoC vendors never bothered to catch up with newer Linux versions

6

The problem

Although that has changed with Google forcing much newer kernel versions for
SoC vendors, it still does not fix the dependencies on SoC vendors for drivers
For example, a kernel upgrade for Qualcomm or MediaTek chipset costs a lot of
money that could've been spent on R&D

7

Kernel version of Quintus;
Phone was released in October 2024
Kernel was released in October 2018
We are at 6.16rc1

The problem

8

This is not a sustainable situation, as it leaves
the SoC vendor in charge of upgrading the
kernel source
SoC vendors also don't entertain B-tier and C-
tier OEMs/ODMs, because from the vendor's
point of view, they are not as much of a
money source as A-tier OEMs.

What can we do
about it?2.

9

“If you want a thing done well, do it
yourself”

~ Napoleon Bonaparte

10

As normal users who are not affiliated with companies, there is no easy
route to achieving a longer lifespan.
Community projects that exist to try and solve the EOL problem:

1.PostmarketOS
2.Ubuntu Touch
3.Droidian/Mobian

Most of the devices supported by these projects use the stock OEM kernel
(downstream), which relies on extensive prebuilt blobs linked to the
Android userspace and libc implementation (bionic)
Hybris is another example of a project that aims to run GNU/Linux with
Android blobs, but it's effectiveness steadily decreases as Linux programs
use newer features only available in recent kernels

What can we do

11

What can we do
There are really only two options:

1.Use the vendor-provided kernel with a Linux
userspace, which will extend the life of the
device for a few more years (until the kernel
becomes too outdated)

2.Spend a lot of time and effort getting the
mainline Linux kernel to work on the device.

12Galaxy S22+ running mainline Linux with
framebuffer, usb and touchscreen

First steps towards
becoming EOL-less3.

13

The Mainline Way!

14

The mainline kernel is the basis for all
SoC vendor kernels, albeit forked to
oblivion.
The most sustainable solution to the
EOL problem is to implement and
upstream support for the device
straight to the mainline Linux kernel
and other userspace firmware like
MESA. From there on, distributions
like Ubuntu, paired with proper mobile
interface (ex. Phosh), can be used.

The Mainline Way!

15

It takes a lot of time to get non-QCOM hardware in upstream
due the to sheer amount of work required. But it’s worth it!

First steps towards becoming
EOL-less

16

Coming back to the topic, our target of
interest is Volla’s flagship phone, the
Quintus!
It all started from us liking Volla’s
openness and Linux and privacy
orientation
They were kind enough to donate us a
phone in March that we could start
developing on.

First steps towards becoming
EOL-less

17

So we began working on it!
Getting basic mainline Linux with only
8 cores and some way of debugging
was the priority
Due to the ugliness of the stock
MediaTek bootloader (LK), we had to
add support for Quintus to some
custom shim bootloader in order to
avoid the forced DTB overlaying.

Disassembled Volla Phone Quintus

First steps towards becoming
EOL-less

18

In April, support for Quintus to
uniLoader was added [1]. We also have a
fork of U-Boot working.
The preferred way of debugging is using
UART. The Quintus exposes small RX
and TX pins on the left part of the
motherboard.

First steps towards becoming
EOL-less

19

After a few days of working on it, we had Linux v6.14-rc5
booting up to initramfs. More things are documented at

ivoszbg’s website [2]

First steps towards becoming
EOL-less

20

Unfortunately, on the same night after
getting mainline booting, something
REALLY unfortunate happened. The TX pad
of our unit lifted and we were no more able
to get any logs and debug.
We notified Volla and while waiting for a
response, we started trying to figure out
alternative ways to debug.

First steps towards becoming
EOL-less

21

We had 2 ideas for an alternative:
using pstore/ramoops

this turned out to not be possible
as the DRAM gets wiped on every
boot.

framebuffer
this required fiddling with DSI after
every pixel update, which I could
not get working outside the LK
bootloader quickly enough.

Framebuffer writes in LK bootloader

First steps towards becoming
EOL-less

After struggling for over 3 months, we felt hopeless.
We had gotten absolutely nowhere with the Volla
Community Days coming up, so I decided to make a
decision.
I went out and bought a Galaxy A34, a device with the
same SoC as the Quintus. We had no schematics for it
initially, getting hands on them took a few days.
On the 12 of June, I successfully got UART on the
Galaxy A34.

th

22Galaxy A34 with UART on the board

https://meet.jit.si/testest

First steps towards becoming
EOL-less

Now that we had another device, it was all-or-nothing. I
spent multiple nights getting all of the core peripherals
up.
After 3 brutal nights, I had gotten core subsystems up for
interfacing with hardware like PMICs and IOMMUs.
Now we had only one more goal, functional USB.
Unfortunately due to the lack of time on our part, we only
managed to get the USB controller and USB regulators
working. But the USB port electrocutes me now!

23

First steps towards becoming
EOL-less

24
Mainline Linux kernel booting on the Galaxy A34

First steps towards becoming
EOL-less

25
PostmarketOS debug initramfs working on

Galaxy A34

First steps towards becoming
EOL-less

26
MTU3 (dual role USB) working

First steps towards becoming
EOL-less: Overall Experience

27

Overall, MediaTek sounds like an easy platform to work
on, but in practicality, that’s definitely not the case.
There are unrelated driver changes scattered around
everywhere that makes rewriting the driver much more
difficult, as all of the logic is spread apart with no easy
way to piece it together.
However, with enough effort and time, it is entirely
possible, as shown in our PoC.

What works and what needs to
be done Working:

Core subsystems
Clocks
Pinctrl
USB
PWRAP
Main PMIC (MT6359)

TBD:
Rest of the PMICs
UFS
Display (dispsys subsystem) and GPU
ICCs, cpufreq, etc
All phone-related features 28

Planned roadmap

29

Q2 2025
Initial bring up of basic

core peripherals in a
fork of ours

Q3/Q4 2025
Upstreamed basic support for
MT6877 and Quintus, work on

complex hardware blocks

If all goes well, more work
on usability as a phone

Q4 2025 and onwards

Resources

30

[1]: https://github.com/ivoszbg/uniLoader/commit/5ee9fd9c1a71168abfac4704e8bb8458a9cfb0dct
[2]: https://ivoszbg.xyz/blog/quintus-hacking-1/

https://github.com/ivoszbg/uniLoader/commit/5ee9fd9c1a71168abfac4704e8bb8458a9cfb0dc

31

Q/A

